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Abstract. Complex simulations are increasingly important in systems
analysis and design. In some cases simulations can be exhaustively vali-
dated against experiment and taken to be implicitly accurate. However,
in domains where only limited validation of the simulations can be per-
formed, implications of simulation studies have historically been qual-
itative. Validation is notably difficult in cases where experiments are
expensive or otherwise prohibitive, where experimental effects are dif-
ficult to measure, and where models are thought to have unaccounted
systematic error. This paper describes an approach to integrate simula-
tion experiments with empirical data that has been applied successfully
in a number of domains. This methodology generates coherent estimates
of confidence in model predictions, model parameters, and estimates,
i.e. calibrations, for unobserved variables. Extensions are described to
integrate the results of separate experiments into a single estimate for
simulation parameters, which demonstrates a new approach to model-
based data fusion.

1 Introduction

Computational simulation applications are increasingly used to explore a num-
ber of domains, including: climate, ocean, and weather modeling; atomic scale
physics modeling; aerodynamic modeling; and cosmology applications. A sig-
nificant challenge for using simulation studies is the quantitative analysis of
simulation results, and the comparison and integration of the simulations with
experimental data.

At Los Alamos National Laboratory, a challenge is to certify the safety and re-
liability of nuclear weapons where only indirect physical experiments can be per-
formed[1]. Simulations model physical experimental results. Uncertainties arise
from a variety of sources that include: uncertainty in the specification of ini-
tial conditions, uncertainty in the value of important physical constants (e.g.,
melting temperatures, equations of state, stress-strain relationships, shock prop-
agation, and transient states), inadequate mathematical models, and numerical
computation effects. Experimental observations constrain uncertainties within
the simulator, and are used to validate simulation components and responses[10].

The methodology described here addresses three main goals in simulation
analysis. First is the quantification of uncertainty in predictions. Most simula-
tions systems lack the ability to directly assess the uncertainty in their results,



although it is clear from failure to match reality that both bias and uncertainty
exist. The second goal is the calibration of unknown parameters. Simulations
often have parameters that are either non-physical or are unmeasurable in ex-
periments, and must be determined, or calibrated. The third goal addressed,
discussed here for the first time, is the linking and joint calibration of variables
common to separate experiments.

Additional issues constrain approaches to this problem. Experimental data
in typical application areas is generally difficult to collect because of expense,
difficulty in making physical measurements, or external constraints. Simulation
studies are often computationally expensive, having usually been developed at
the limits of feasible computation, and so there is limited access to alterna-
tive simulation parameter settings. Some exploration of alternatives is therefore
possible, but putting the simulator directly into an iterated method can be pro-
hibitive.

This paper describes a methodology that has been implemented and demon-
strated to be effective in addressing these issues in real problems[2]. The approach
is to model simulation response with an accurate emulated response. Parameters
of this emulator as well as simulation parameters are simultaneously determined
using a Bayesian parameter formulation and associated Markov chain Monte
Carlo sampling. The emulator itself is a stochastic process model, modeling
both simulation response and systematic bias.

1.1 The Model Evaluation Problem

This section follows an explanatory “toy” problem that captures many of the
issues in analyzing (simulation) models in conjunction with experiments[3]. The
task is to analyze models of gravitational attraction, through the combination
of an analytical model and experiment. To study the nature of falling objects
a test object is dropped from various heights to study their descent time. In
addition to characterizing the measurements of limited experiments, we wish to
extrapolate the behavior. In practice, the drop time is not a simple effect due to
atmospheric effects. For explanatory purposes, experimental data is generated
according to

d2z

dt2
= −1− 0.3

dz

dt
+ ε,

which includes the square law of gravitational attraction, plus a term for lin-
ear effects. If the simulation models only the gravitational attraction d2z

dt2 = −1,
the results do not explain the data well, and extrapolate even more poorly.
This model would give a fitted response as shown in Fig. 1a. To analyze the
simulation results, we need a model of the data that explicitly allows for sys-
tematic error in the simulation system. In this approach, we use a model η that
models the simulation responses, and an additional model δ of the discrepancy
between the simulation and the data, so that the model is comprehensive, i.e.,
Y (z) = η(z) + δ(z) + ε. The data can now be modeled accurately as a system-
atic discrepancy from the simulation. Incorporating uncertainty into the model
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Fig. 1. Explanatory diagrams of experiment drop times. a) Results compared to an
inadequate ideal model; b) model results and (bounded) discrepancy adjustment; c)
revised model.

response, the results are shown in Fig. 1b. The model’s η, or simulation-based
prediction, remains distinctly low, while the discrepancy adjustment, with un-
certainty incorporated, follows the data closely and responds better in extrapo-
lation.

Continuing the analysis, the discrepancy term suggests the postulation of an
improved model, for example:

d2z

dt2
= −1− θ

dz

dt
+ ε,

where θ is an unknown to be calibrated. Determining this model, including
uncertainty both in the model and the calibration of the parameter, the results
are shown in Fig. 1c. In this case, our best simulation result with the calibrated
parameter closely follows the data, and the complete model closely bounds the
prediction. The enhanced model gives greater confidence in extrapolation as
compared to the incorrect model relying on estimated discrepancy to fit the
data.

To summarize, the problem starts with the modeling of simulation response,
and the modeling of experiments as the simulation response plus some system-
atic bias. This discrepancy describes simulation model insufficiency (or other
systematic bias). Parameters of these models are determined so that uncertainty



in predictions is implicitly given. Unknown parameters are calibrated to best rec-
oncile the experimental data with the simulations, reporting on plausible values.
Discrepancy estimates may be further used to examine problem foundations.

2 Model Formulation

This modeling approach was originally generated by Kennedy and O’Hagan [6],
and has been discussed in application in [8, 9]. For space limitations, the model
cannot be completely described here, but complete formulation of the single
experiment configuration methodology is available [10, 11].

The core of the modeling effort is a Gaussian stochastic process model (GPM).
These models offer an expressive method for modeling a response over a generic
space [12]. The GPM relies on a specified covariance structure, called the co-
variogram, that describes the correlation between data points that scales with
distance. In this case, nearby is measured as a scaled Euclidean distance in the
simulation parameter space. The covariogram is then:

C(x1, x2) =
1
λz

exp−d(x1,x2,β)2 + I
1
λs

,

where d =
√∑

βi(xi
1 − xi

2)2. The λ parameters are precisions (inverse vari-
ances), with λz corresponding to the variability of the data, and λs correspond-
ing to the variability of the residual. This correlation assumption constrains the
response surface to a family functions. Predictions are made by computing a
joint covariogram of the known and predicted datapoints, and producing the
multivariate normal conditional distribution of the unknown locations. The pre-
dictions are then distributions rather than point estimates:

Xp ∼ N(µp, Σp).

This distribution can be used to produce realizations of possible values, and also
allows the extraction of confidence bounds on the estimates.

η models the simulations, but a two-part model is used to also explicitly
model the discrepancy δ between the observed data, yobs, and the simulation
response, ysim, such that:

ysim = η(x, t) + ε,
yobs = η(x, θ) + δ(x) + ε.

t are simulation parameters whose corresponding values are not known for the
observed data. These unknown θ are determined (i.e., calibrated) in modeling,
along with the β and λ parameters for for the η and δ models.

η and δ model parameters and θ values are generated with Markov chain
Monte-Carlo sampling of a Bayesian posterior. The Bayesian approach gives the
posterior density for the η model as

π(, β, λ|ysim(x)) ∝ L(y(x)|η(x, β, λ))× π(β)× π(λ).



In words: the posterior distribution of the parameters given the simulation data
is proportional to the likelihood of the data given the parameters times the prior
probability of the parameters. The likelihood corresponds to a least squares
measure of the model predictions compared to the given data, though this is
not computed explicitly. This formulation has been extended to produce a single
likelihood of the η + δ model fitting the observed and simulated data simultane-
ously [11].

The posterior of the parameters can be sampled from using Metropolis-
Hastings MCMC sampler, resulting in samples from joint the posterior density
of all parameters. It is possible to optimize directly on the likelihood function
or the posterior for a point solution, but the resulting “optimal” solution has
no associated confidence on the parameters. Computing the likelihood requires
inversion of the k × k covariance matrix, where k = n(p + q) + mq, where n is
the number of experimental data and m is the number of simulated data, and
p is the dimensionality of the simulation response, and q is the dimensionality
of the discrepancy response. This quickly becomes intractable if p grows large,
so an important enhancement to the model is the use of linear basis dimension
reduction in the output space, the effects of which can be compensated for in
the modeling approach. Good results have been obtained with principle compo-
nents reducing the p dimension, and kernel regression constraining and reducing
q. This makes even problems with large data sizes, for example time series or
images, computationally tractable [10].

3 Example Application: Flyerplate Experiments

In order to study the properties of materials under shock, plates of the mate-
rial are subjected to a high-velocity impact. The velocity of the impacted plate
is measured over time, revealing several material property driven regimes, as
detailed in Fig. 2.

Fig. 2. Theoretical regions of flyerplate velocity measurements.

Results of flyerplate experiments are shown Fig. 3, which shows both the sim-
ulations from a 128 experiment design over 7 variables, and a trace of measured



data. The unknown θ parameters ranges have been defined by subject matter
experts, and scaled to [0,1] for the purposes of the analysis. θ in this problem
are parameters from the Preston-Tonks-Wallace stress-strain model[5]. Param-
eters include: θ0 Initial strain hardening rate; κ material constant in thermal
activation energy; − log(γ) material constant in thermal activation energy; y0,
maximum yield stress; y∞, minimum yield stress; s0, maximum saturation stress;
s∞, minimum saturation stress. The simulation data is modeled with the first
five principal components. The discrepancy model is a kernel basis constrain-
ing relatively smooth variation over the parameter space, modeling an arbitrary
general effect in the absence of a more specific model.

Fig. 3. Observed and simulated tantalum flyerplate velocity results, native data scale
and standardized to mean 0 variance 1.

Fig. 4. Calibration results of unknown model parameters explored with simulations.



Figure 4 shows the results of the full joint parameter calibration as contours
of the two-dimensional PDF projections, as sampled by the MCMC procedure.
There are clear trends in some variables, which have been calibrated more tightly
than their a priori ranges, whereas some do not have clear preferred values. An
additional variable importance measure comes from the sampled spatial scaling
parameters β, where lower spatial correlation corresponds to more active vari-
ables. This experiment verified that β2, β3, and β4 are important, consistent
with the θ calibration. Proper sensitivity analysis can be performed by analyz-
ing model predictions, which can be produced cheaply from the emulator model.
Figure 5 shows predictive results of the model in the scaled space. These predic-

Fig. 5. Observed and calibrated predictions of the velocimetry results for tantalum
flyerplate experiments (scaled). On the upper left is observed data in large dots, with
the η model. Lower left shows the δ model contribution. The upper right is the observed
data with the Y = η + δ result. The lower right plot repeats all results on one scale.
Solid lines are mean response, and dotted lines show the associated 10%-90% confidence
region of each quantity.

tions cover several model realizations (drawn from the Normal model distribu-
tion), predicted over many MCMC drawn parameter sets. The closest emulator
simulation response is not able to capture the observed data, in particular in
the edges where the simulations showed an initial higher-than-expected mea-
surement, and late-time bump that is not observed in the data. The discrepancy
adjusted response reduces this error. Of particular interest is that the simulator
response alone not only failed to capture the observed data, but the confidence
region is also not satisfactory. The Y = η + δ model’s confidence regions are
more appropriate.



4 Joint Calibration of Models

In complex applications, separate effects test are used to explore different aspects
of a problem through surrogate experiments. Flyerplate results may be scientifi-
cally interesting in their domain, but the experiments are also intended to collect
data on effects that are part of larger physical simulations. Some of these ex-
periments will inform on the same parameters, and it is desired to perform a
calibration that uses all of these results to simultaneously and consistently.

If two models have separate likelihoods L1(θ1, θ2|y) and L2(θ1, θ3|y), they
can be considered a joint model as LJ = L1 ×L2. Using MCMC, the draws can
be simplified, computing LJ for the draws related to θ1, while for the parameters
of independent models the likelihoods, L1 and L2 are computed independently
for draws of θ2 and θ3, saving computation. This is a method to quantify the
effects of variables in common between experiments.

Fig. 6. Shock speed simulation models and measured data for hydrogen (left) and
deuterium.

In the shock speed modeling problem, it is desired to model measured shock
speed quantities of several materials. A single experiment in a single material
consists of shock particle velocity up measured in response to shock of speed us.
Several experiments characterize a material response curve, which is modeled by
simulations, as shown in Fig. 6.

In the full application, there are many materials and several parameters,
some of which are shared between models. We will limit the discussion to the
characterization of hydrogen (H) and deuterium (D), which use the same pa-
rameters, referred to here as θ1-θ3. Figure 7 shows the calibration of parameters
for each single model, as well as the joint model. The joint model shows a more
compact and stable calibration, in a region that is expected by domain experts.
These results show that this methodology can successfully capture data from dif-
ferent experiments and even different simulation systems to calibrate underlying
parameters with greater fidelity than the single model calibrations are capable.



Fig. 7. Joint calibration of model parameters. The left plot shows the calibrated theta
vectors for a hydrogen model alone, the middle plot shows the same parameters in a
deuterium model, and the right plot shows the joint calibration of the parameters given
both datasets.

5 Discussion

The approach described provides a method to quantify the implications of ex-
perimental data combined with simulation experiments. It is a tool to be used
with domain experts from both the modeling and simulation domain, as well as
the experimental data domain. Expert judgement is required in the generation of
appropriate simulation studies, the construction of plausible discrepancy mod-
els, and the assessment of results. If domain knowledge is available to describe
strong parameter priors, including θ parameter bounds and relationships, these
may be incorporated, though by default weak priors that do not inappropriately
constrain modeling and calibration can be used.

As is usual in complex models, attention to diagnostics is important. Because
this modeling approach incorporates a number of trade-offs in the modeling
space, it is possible that the model could enter an inappropriate domain, where
it is fitting the data well, but the parameters are not plausible (e.g., counter
to physics). Also, some expertise in MCMC is needed to identify the initial
transient and to determine appropriate step sizes over the parameter ranges to
ensure adequate mixing of the chain.

Without response smoothness, it is difficult to envision how to model and
calibrate in this (or any) framework. Thus, a key issue in successful application
is ensuring simulation response smoothness through the parameter space under
analysis. If this is not an inherent quality of the data, variable transformations
and feature construction studies are necessary.

In summary, this modeling approach:

– provides a method for integrating simulation experiments with empirical
data, modeling systematic error in the simulation;

– calibrates unknown simulation parameters;
– provides well-founded uncertainty estimates in parameters and predictions;

and
– allows separate experiment results to be fused into one result of parameter

calibration.



When given two distinct datasets with a relationship in their underlying vari-
ables, it is generally not clear how to fuse the information in the datasets into
a single answer. Information must be of the same type before it can be quanti-
tatively reconciled, and this is usually solved by transforming the data directly
into the same domain. The application methodology described here shows how
different datasets may be linked by a generating model, in this case a simulation
that can produce results in the various model domains. Through this approach,
inverse problems from two distinct experimental domains can be combined, and
a composite model realized.
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